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Lung cancer remains the leading cause of cancer-
related mortality worldwide, yet early detection signifi-
cantly improves patient survival rates. This project investi-
gates whether a machine learning model can estimate lung
cancer risk based on a brief survey capturing key demo-
graphic, lifestyle, and symptom-related factors. Using a
public synthetic dataset of approximately 300 individuals
with 15 features (including age, gender, smoking history,
and binary indicators for various symptoms and habits),
we developed and evaluated two classifiers: logistic re-
gression and random forest. Model development involved
data preprocessing, feature engineering, and hyperparam-
eter tuning via cross-validation. On a held-out test set,
both models achieved high performance, with accuracy
ranging from 82% to 89% and ROC AUC scores near 0.95.
Analysis revealed that respiratory symptoms and alcohol
consumption were among the strongest predictors of lung
cancer risk, consistent with epidemiological evidence. To
enhance interpretability, we applied SHAP (SHapley Ad-
ditive Explanations) to assess feature contributions for in-
dividual predictions, confirming that the models’ deci-
sion patterns aligned with clinical capabilities. While the
dataset and scope limit direct clinical application, the find-
ings highlight the potential of lightweight, survey-based
predictive tools for early lung cancer risk screening.

1 Introduction

Lung cancer is the leading cause of cancer mortality in both
men and women, accounting for approximately 1.8 million
deaths globally in 2020 [1]. Early detection of it can signif-
icantly improve patient outcomes: five-year survival rates can
exceed 70% for stage I lung cancers, while advanced stage
(stage IV) has under 10% five-year survival [2]. However,
early-stage lung cancer is difficult to diagnose because ini-
tial symptoms (e.g. fatigue or chronic cough) are often non-
specific and common to benign conditions [1]. As a result,
diagnosis is frequently delayed until the cancer has progressed

to advanced, less treatable stages. Tobacco smoking has shown
to be most important risk factor for lung cancer — studies esti-
mate 80-90% of lung cancer deaths are attributable to smoking
[3, 4] — yet lung malignancies also occur among non-smokers,
especially with exposure to secondhand smoke, radon gas, or
other environmental and genetic factors. Because of the chal-
lenges in early recognition, there is a demand for decision sup-
port tools that can assess an individual’s lung cancer risk using
easily obtained information (such as demographics, smoking
history, and simple symptom questions). In this project, we in-
vestigate whether machine learning (ML) models can predict
the likelihood of lung cancer using a survey-based dataset of
risk factors and symptoms. In developing a predictive model
and interpreting its key features, we explore a potentially low-
cost approach for earlier detection of lung cancer. As a high-
risk exploratory study, regardless of the outcome, we provide
insights into the feasibility of a survey-based approach to lung
cancer risk prediction.

2 Related Work

Prior research has explored various Al methods for lung cancer
risk prediction using patient data. Nemlander ef al. (2022) de-
veloped an adaptive symptom e-questionnaire combined with
machine learning to predict lung cancer among patients re-
ferred to specialists for suspected tumors [1]. They trained
gradient-boosted tree models stratified by smoking status,
achieving up to 82% classification accuracy for non-smokers
(using fewer predictors in that subgroup) and around 77% for
smokers [1]. Notably, age, sex, and education level emerged
as the most important predictors in all groups [1], highlight-
ing the relevance of basic demographics alongside symptom
profiles. Other studies have leveraged public datasets of lung
cancer risk factors (e.g. surveys of lifestyle habits and symp-
toms) to benchmark different algorithms. Dritsas and Trigka
(2022) evaluated a wide range of classifiers on a Kaggle sur-



vey dataset with 14 features (smoking status, alcohol use, var-
ious respiratory symptoms, etc.), using data augmentation and
extensive cross-validation [3]. Their best model, an ensem-
ble Rotation Forest, attained an accuracy of about 97% and
an AUC of 0.993 after accounting for class imbalance with
SMOTE oversampling [3]. Similarly, B. Dutta (2025) per-
formed a comparison of machine learning versus deep learn-
ing models on a symptom-and-lifestyle lung cancer dataset
[4]. Using more involved preprocessing (e.g. feature selec-
tion, outlier removal, normalization) and hyperparameter tun-
ing, Dutta reported that a simple feed-forward neural network
(with one hidden layer) achieved approximately 92.9% accu-
racy, outperforming classic methods like logistic regression or
SVM in their experiments [4]. These studies show the promise
of ML-augmented lung cancer risk prediction, but also high-
light that careful design (for example, handling class imbal-
ance and selecting informative features) is critical for success.
In addition, researchers are increasingly incorporating explain-
able AI techniques (such as feature importance analysis or
SHAP values) to interpret models—with the goal of identify-
ing which risk factors most strongly influence predictions and
making the predictions more transparent to clinicians. This
work builds on this growing body of literature by applying a
mix of interpretable models and model-agnostic explainability
methods to a lung cancer survey dataset, taking into account
their limitations.

3 Methodology

3.1 Data Preprocessing

We utilized a publicly available lung cancer risk dataset from
Kaggle, consisting of synthetic survey responses from roughly
300 individuals [5]. The dataset contains 16 columns: one de-
mographic factor (Age), one genetic factor (Gender), and 14
yes/no survey questions about lifestyle or symptoms. These
binary risk factors include smoking history, alcohol consump-
tion, and various health indicators such as having "yellow
fingers” (a possible sign of heavy smoking), chronic cough,
fatigue, allergies, wheezing, shortness of breath, swallowing
difficulty, and chest pain, among others. The binary target
variable LUNG_CANCER indicates whether the respondent has
been diagnosed with lung cancer (Yes or No). In the raw
data, responses were encoded inconsistently (some as strings
"YES"/"NQO", others as numeric 1/2). We performed data
cleaning to ensure all features were numeric and uniformly
coded. Specifically, we mapped the target labels “YES” — 1
(cancer present) and “NO” — 0 (no cancer). For the pre-
dictor columns, we converted all yes/no responses to binary
values as well, standardizing the encoding such that 1 repre-
sents the presence of a risk factor or symptom and O represents
its absence. For example, a response of “YES” to SMOKING
or COUGHING was encoded as 1. We also encoded Gender
as 1 for male (M) and O for female (F). No missing values
were present in this dataset (probable given this is a synthetic
dataset), so imputation was not needed. After preprocessing,
we had a clean data matrix of 310 samples x 15 features (14

binary risk factors plus numeric age).

3.2 Analytic Workflow

We began with exploratory data analysis (EDA) to under-
stand the dataset’s characteristics. This included examining
the age distribution, the balance of the target classes, and the
prevalence of each risk factor among the lung cancer positive
and negative groups. We observed that the dataset is skewed
toward older individuals: the majority of respondents were
above age 50, with a median age in the mid-60s. The lung
cancer positive class was the minority: only about 1/4 to 1/3
of the samples were labeled “YES” for lung cancer, showing a
substantial class imbalance (i.e., far more non-cancer respon-
dents than cancer cases in the data). The EDA revealed some
intuitive patterns; for instance, a much larger fraction of the
lung cancer patients were smokers compared to the non-cancer
group, and symptoms like coughing, wheezing, and shortness
of breath were more frequently reported among those with
cancer than those without. We also computed the correla-
tion matrix between features to check for redundant or highly
collinear variables. Some risk factors showed noteworthy cor-
relations with each other: for example, Anxiety was corre-
lated with Yellow Fingers (perhaps because both can be associ-
ated with heavy smoking behavior), and Swallowing Difficulty
was moderately correlated with Anxiety as well. Shortness of
Breath and Fatigue had a moderate correlation, possibly re-
flecting a common underlying health condition affecting both.
These relationships suggest there may be underlying latent fac-
tors (such as general health status or smoking intensity) that
influence multiple survey responses. However, multicollinear-
ity was not extreme (most pairwise Pearson r values were be-
low 0.6), so we decided to retain all features for modeling at
this stage. Additionally, we trained a simple random forest on
the data and extracted its impurity-based feature importance
scores. This rough check indicated that Age, Allergy, Alco-
hol Consuming, and Peer Pressure might be among the top
predictors in this dataset (we delve into more rigorous feature
importance analysis after fitting our final models).

For model development, we trained two supervised learn-
ing models: a logistic regression classifier and a random forest
ensemble classifier. Logistic regression (LR) was chosen as a
simple, interpretable baseline model, while the random forest
(RF) served as a more flexible non-linear model and provided
a benchmark for potential accuracy gains from a more com-
plex approach. To make the most of the small dataset, we
employed cross-validation and hyperparameter tuning on the
training set. We first split the data into an 80% training set and
20% test set, using stratified sampling to preserve the propor-
tion of positive (cancer) cases in both sets. Within the training
set, we performed a grid search with 5-fold stratified CV to
optimize the logistic regression pipeline. The LR pipeline in-
cluded standardization of features (subtracting mean and scal-
ing to unit variance) and the creation of interaction terms: we
used a polynomial feature expansion of degree 2 to allow the
logistic model to capture pairwise interactions between risk
factors. We experimented with different regularization penal-



Correlation Matrix

10
cenper (1002 0.04 DEERRERPEIPIRIL 015 0.14 045 maozs 007
009

LK 0,06 0.03 0.12 006 08

AGE
SMOKING
YELLOW_FINGERS 018
ANXIETY
PEER_PRESSURE
GHRONIC_DISEASE

FATIGUE [

ALLERGY

0 015 -04
25024 033

0.28 RRIET 0,02 0.06 - 00

WHEEZING
ALCOHOL_CONSUMING
COUGHING 013 0.17 1
SHORTNESS_OF_BREATH {101
SWALLOWING_DIFFicULTY [BXOES

CHEST_PAIN 036,

004 FRE!

003 035 0.49 0.37 008 PRELL 0,07
(£F1.0.10-0.11-0.09: 024 015 0.33 008 002 0.07 M 0.19

LUNG_CANCER 0,07 0.09 0,06 0.18 0.14 0.19 0.11 0.15 033 0.25 0.29 0.25 0.06 0.26 0.19 gk

ERTERTRN 0.07 0.26

w

K

GENDER
SMOKING
ANXIETY
FATIGUE
ALLERGY
WHEEZING
COUGHING
CHEST_PAIN

&
&
z
Z
3
o
2
3

PEER_PRESSURE

YELLOW_FINGERS
CHRONIC_DISEASE
ALCOHOL_CONSUMING
SHORTNESS_OF_BREATH
SWALLOWING_DIFFICULTY

Figure 1: Correlation matrix showing pairwise Pearson cor-
relation coefficients among survey features. Moderate corre-
lations are observed between several symptoms and lifestyle
factors, such as between Anxiety and Yellow Fingers, or be-
tween Fatigue and Shortness of Breath. Most correlations are
weak, indicating low multicollinearity.

ties (L1, L2, and elastic-net combinations) and regularization
strengths (the inverse regularization parameter C') for LR, em-
ploying the saga solver to handle L1 terms. Model selection
was guided by maximizing the average area under the ROC
curve (AUC) across the cross-validation folds. The best lo-
gistic model found used an elastic-net penalty (a mix of L1
and L2) with an optimal regularization strength (we found
that a fairly strong overall regularization, roughly C' ~ 1073,
yielded the best validation performance). This shows that reg-
ularization was important to prevent overfitting, given the ex-
panded feature space with interaction terms.

For the Random Forest model, we configured an ensemble
of 300 trees (estimators) with bootstrap sampling. The hyper-
parameters for the RF model (such as maximum tree depth and
minimum samples per split) were not exhaustively tuned; in-
stead, we used the default settings. For example, trees were
allowed to grow until they were pure or until leaf nodes con-
tained at least two samples. We relied on ensemble averaging
to mitigate overfitting. We set the class_weight parame-
ter to "balanced" in both models to account for the class
imbalance. This ensured that the minority class (i.e., lung can-
cer cases labeled as 1) received greater weight during training.
This approach helps compensate for the imbalance by effec-
tively increasing the penalty for misclassifying positive cases,
which is critical in a health screening context where false neg-
atives (i.e., missed cancer cases) are more serious than false
positives.

After training, we evaluated the model performance on the
held-out 20% test set. We computed key evaluation metrics
including overall accuracy, precision, recall (sensitivity), Fy
score, and the ROC AUC. We also examined the confusion
matrix for each model to understand the trade-offs between
false positives and false negatives. In a screening application,
a high recall (sensitivity) is particularly desirable, since we

want to catch as many true cases as possible even if it means
some false positives. Thus, we paid special attention to how
many lung cancer cases were missed by each model (false neg-
atives) and how many non-cancer individuals were incorrectly
flagged (false positives). Additionally, we plotted ROC curves
for both models on the test data to visualize the trade-off be-
tween sensitivity and specificity across different classification
thresholds.
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Figure 2: Confusion matrix for the logistic regression model
evaluated on the test set. The model correctly identifies all
negative cases (true negatives = 8), but misses 11 cancer cases
(false negatives), resulting in reduced sensitivity. Despite this,
it achieves perfect precision for the positive class (no false pos-
itives), highlighting a conservative prediction bias.

Random Forest Confusion Matrix

Figure 3: Confusion matrix for the random forest model eval-
uated on the test set. The model correctly classifies 51 out of
54 cancer cases (high recall), with only 3 false negatives and
4 false positives. This represents a more balanced trade-off
between sensitivity and specificity, outperforming logistic re-
gression.

Finally, we applied model interpretability techniques to un-
derstand how the models were making their predictions. For
the logistic regression, we could directly inspect the learned
weight coefficients to see which features had the largest posi-
tive or negative influence on predicting lung cancer. We also



employed SHAP (SHapley Additive Explanations) for both
models (LR and RF) to quantify each feature’s contribution
to the prediction for each individual instance. We generated
SHAP summary plots that display the global feature impor-
tance and the direction of each feature’s effect on the model’s
output. This helped us verify whether the model’s behavior
aligns with domain expectations (for example, we would ex-
pect that being a smoker generally pushes the model towards
a higher predicted risk of cancer). Additionally, we explored
specific example explanations using SHAP force plots for indi-
vidual predictions, and SHAP dependence plots to investigate
potential interaction effects—such as whether the model’s re-
liance on age was different for smokers versus non-smokers.
All analysis was implemented in Python (using libraries such
as pandas and scikit-learn for data handling and modeling, and
Seaborn/Matplotlib for visualization).

4 Results

4.1 Model Performance

Both the logistic regression and the random forest models
achieved reasonably high predictive performance despite the
limited dataset size. The logistic regression model had an ac-
curacy of approximately 82% on the test set. Its recall (sen-
sitivity) for lung cancer cases was about 80%, meaning the
model correctly identified 80% of actual cancer patients while
missing about 20%. The precision for the positive class was
1.00, showing that all individuals predicted by the model as
"having lung cancer” were actually true positives, with no false
positives for that class. The ROC curve for the logistic regres-
sion model had an AUC of 0.95, exhibiting high performance.
This optimized model slightly outperformed a baseline logis-
tic regression (which lacked interaction features and regular-
ization), showing that feature engineering and hyperparameter
tuning contributed to overall performance.
Table 1 summarizes test-set results.

Table 1: Test set performance of logistic regression (LR) and
random forest (RF).

Model Acc. Recall Prec. AUC
LR 0.82 0.80 1.00 0.95
RF 0.89 0.94 093 0.96

The random forest classifier performed slightly better than
the logistic regression model in terms of raw accuracy, achiev-
ing approximately 89% accuracy on the test set. It also cor-
rectly identified a greater proportion of the cancer cases, with a
recall of 94% for the positive class. This shows that the model
missed fewer true cancer cases compared to logistic regres-
sion. The precision for the positive class was 0.93, reflecting
a low false positive rate. The ROC AUC for the random forest
was 0.96, slightly higher than that of the logistic regression
model, exhibiting higher performance. Compared to logis-
tic regression, the random forest had a better precision-recall
trade-off at the default threshold of 0.5, likely due to its greater

capacity to model complex relationships in the data. Its con-
fusion matrix showed fewer false negatives while maintaining
a reasonable number of true negatives, exhibiting high sensi-
tivity and good specificity. As shown in Figure 2, the ROC
curves of the two models overlap considerably. This shows
that while the random forest leveraged its modeling flexibility
effectively, the simpler logistic regression model was still able
to extract most of the predictive signal from the data. But given
the small sample size, these performance metrics should be in-
terpreted with caution. The addition or removal of just a few
individuals in the test set could cause the reported accuracy or
AUC to vary by several percentage points. To confirm these re-
sults, external validation on an independent dataset is needed.
Nonetheless, achieving nearly 89% accuracy and an AUC of
0.96 on a balanced test split is promising, and aligns well with
existing literature (e.g., prior studies have reported accuracy
ranges of roughly 80-95% on similar lung cancer prediction
tasks) [1, 3].
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Figure 4: ROC curves on the test set for the logistic regression
and random forest models. Both models achieve a high area
under the curve (AUC ~ 0.95), exhibiting high performance
on the prediction of lung cancer.

4.2 Model Interpretability

To understand the drivers behind the model predictions,
we analyzed feature attributions using SHAP (SHapley
Additive exPlanations) values for both the logistic regres-
sion and random forest models. SHAP values provide a
consistent framework to quantify each feature’s contribu-
tion to a specific prediction, offering insights into how the
models reach their conclusions and whether those decisions
align with known medical knowledge. For the logistic
regression model, the SHAP summary plot (Figure 3) re-
vealed that the most influential features were FATIGUE,
CHRONIC_DISEASE, SWALLOWING_DIFFICULTY,
ALLERGY, and PEER_PRESSURE. High values of these fea-
tures (shown in red) tended to push the model output toward
the positive class (i.e., “has cancer”), while low values (blue)
had the opposite effect. For example, individuals reporting
persistent fatigue or known chronic disease had substantially
higher predicted probabilities of lung cancer. Interestingly,
ALLERGY and PEER_PRESSURE also appeared as impactful



features—potentially echoing correlations in the synthetic
data between these attributes and cancer risk, though these
would require further validation in real-world settings.

In contrast, the SHAP analysis for the random for-
est model (Figure 4) had a different ranking of features.
The top five included ALCOHOL_CONSUMING, ALLERGY,
PEER_PRESSURE, YELLOW_FINGERS, and FATIGUE.
These features contributed in more complex and sometimes
non-linear ways, with some individuals showing large posi-
tive SHAP values when these risk factors were present. For
instance, the model often assigned high risk scores to partici-
pants with yellow-stained fingers (a proxy for smoking expo-
sure), high alcohol consumption, or peer pressure—likely cap-
turing behavioral or lifestyle patterns linked to elevated cancer
risk. Having ALLERGY again as a high-impact feature sug-
gests that both models, despite architectural differences, found
signal (or correlations) in this variable. These differences
highlight the complementary strengths of the two models. Lo-
gistic regression provides transparent, linear relationships that
can be easily interpreted, while random forest captures higher-
order interactions and non-linear effects. The consistency of
features like FATIGUE and ALLERGY across both models
shows their predictive value in this dataset, though some asso-
ciations (such as the importance of PEER_PRESSURE) may
reflect structural patterns in the synthetic survey responses
rather than causal risk factors.
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Figure 5: SHAP summary plot (dot format) showing feature
contributions for the logistic regression model on the test set.
Each dot represents an individual prediction, colored by the
feature value (red = high, blue = low), with the x-axis indicat-
ing the feature’s impact on the model output.

Overall, these SHAP-based interpretability analyses
strengthen confidence that both models are utilizing patterns
that are at least partially aligned with clinical reasoning, such
as symptoms (e.g., fatigue), behavioral risk factors (e.g.,
alcohol use), and comorbidities (e.g., chronic disease). At
the same time, they also underscore the need for careful
validation—particularly where synthetic or proxy features
may introduce artifacts. Future work with real clinical datasets
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Figure 6: SHAP summary plot (dot format) for the random
forest model. Compared to logistic regression, the RF shows a
different ranking of dominant features, and wider variation in
SHAP values across individuals.

would be needed to confirm whether the influential features
identified here generalize beyond this cohort.

5 Conclusion

In this project, we designed and evaluated a machine learning
approach for predicting the likelihood of lung cancer from a
brief questionnaire. Despite the high-risk nature of attempting
a new idea with a small synthetic dataset, our results demon-
strate the potential of such models: the logistic regression and
random forest achieved around 82-89% accuracy in classify-
ing survey respondents as having lung cancer or not, with ROC
AUC:s near 0.9. These performance levels are comparable to
those reported in related research using similar data [1, 3], sug-
gesting that even relatively simple models can extract signif-
icant signal from self-reported risk factors. The most influ-
ential features driving our predictions (smoking status, age,
coughing, shortness of breath, chest pain) aligned well with
established clinical understanding of lung cancer risk factors
[3]. This alignment is encouraging because it means the model
is likely focusing on true risk indicators rather than irrelevant
patterns or noise. Early detection of lung cancer remains a
challenging problem, but our exploratory study supports the
notion that a risk questionnaire combined with an ML model
could aid in triaging individuals for further screening. For ex-
ample, in a primary care setting, a survey-based model could
identify high-risk patients (older long-term smokers with cer-
tain symptoms) who might benefit from definitive screening
tests like low-dose CT scans—an intervention which has been
shown to reduce lung cancer mortality in high-risk groups [2].

However, there are several limitations to this study. First,
the dataset used was both small (n ~ 300) and synthetic — it
does not capture the full variability of real patient populations.



The model may therefore be overfitting nuances of this arti-
ficial dataset and might not generalize to actual clinical data.
Prior studies have noted that models trained on such public
synthetic data can perform optimistically and lack the rigor of
real-world clinical features [3]. Second, the survey features
themselves are limited; important predictors like family his-
tory of cancer, detailed smoking intensity (e.g. pack-years), or
occupational exposures were not included. In a real setting, in-
corporating these additional factors would likely improve risk
stratification. Third, our current models treat the problem as
a static classification based on one-time inputs. In practice, a
patient’s risk evolves over time, and a longitudinal approach
(monitoring how a person’s symptoms or exposures change)
could be more powerful. Additionally, while our model can
highlight individuals at high risk, it cannot by itself provide
a definitive diagnosis — any high-risk predictions would need
to be followed up with medical imaging (e.g. an X-ray or CT
scan) and clinical evaluation.

In future work, a number of avenues could be pursued to
build on this project. Gathering a larger and more repre-
sentative dataset (for example, merging multiple survey data
sources or using actual patient cohorts with outcomes) is a
top priority to improve the model’s robustness. With more
data, we could also explore more advanced algorithms such
as gradient boosting machines or deep neural networks, which
have shown superior accuracy in some studies [3, 4]. An-
other promising direction is to integrate this questionnaire-
based model with clinical data — for instance, combining the
risk score from survey responses with results from screening
tests or imaging. Dritsas et al. suggest that incorporating in-
formation from lung CT scans alongside survey data could im-
prove early detection performance [3]. From an Al explain-
ability perspective, we could implement more sophisticated
interpretability techniques or even causal inference methods to
ensure the model’s predictions are transparent and trustworthy
for clinicians. Lastly, deploying the model in a real-world tool
would be an exciting step: one can imagine a decision support
system where a clinician (or even a patient via a web applica-
tion) inputs the answers to a risk questionnaire, and the system
outputs a personalized lung cancer risk estimate along with an
explanation highlighting the contributing factors. Such a tool,
used appropriately, might help prioritize high-risk individuals
for proper follow-up (for example, recommending those with
high predicted risk to undergo diagnostic imaging sooner).
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