FINAL PROJECT: LUNG CANCER PREDICTION

Luke Profio

Project Overview

- Early detection of lung cancer dramatically increases survival rates, but diagnosis is often delayed until advanced stages.
- In this project, we build a supervised learning pipeline that predicts whether a patient is likely to have lung cancer from an anonymous survey covering demographics, lifestyle habits and respiratory-related symptoms.

Objectives

- 1. Clean, explore and visualize the survey data.
- 2. Build and evaluate predictive models (Logistic Regression as baseline; Random Forest as ensemble)
- Interpret which features drive the predictions.
- 4. Summarize findings and outline limitations of the study.

About the Dataset

- This is a publicly-available Kaggle dataset of hypothetical lung cancer patients that was synthetically generated.
 - Nelson, S. G. (2023). Lung Cancer Prediction [Kaggle Notebook]. Kaggle. Retrieved July 15, 2025, from https://www.kaggle.com/code/sandragracenelson/lung-cancer-prediction/notebook
- This contains 11kB of tabulated data, with over 310 records and 16 features (14 numeric, 2 non-numeric). Outside of demographic features such as gender and age, there are a variety of symptom-based features such as anxiety and allergy, in addition to the target feature, LUNG_CANCER which is converted into a numeric value.

Data Cleaning

- Missing values were checked for, while duplicates and outliers were not relevant for this dataset given it didn't have an identifier, and all numeric columns were re-encoded as 1's/0's.
- The target variable was mapped from "YES/NO" to 1/0 to provide the numeric form needed by classifiers.
- All 2's were replaced with 1's, and all 1's were replaced with 0's (where 2 = true/positive and 1 = false/negative) across nonobject columns to ensure consistency in Boolean features, and avoid unintended ordinal interpretations.
- Gender was re-encoded from M/F to 1/0 to ensure a uniform numeric representation of the data for downstream analysis.

Data Cleaning

<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 309 entries, 0 to 308 Data columns (total 16 columns):</class></pre>								
#	Column	Dtype						
0	GENDER	309 non-null	int64					
1	AGE	309 non-null	int64					
2	SMOKING	309 non-null	int64					
3	YELLOW_FINGERS	309 non-null	int64					
4	ANXIETY	309 non-null	int64					
5	PEER_PRESSURE	309 non-null	int64					
6	CHRONIC_DISEASE	309 non-null	int64					
7	FATIGUE	309 non-null	int64					
8	ALLERGY	309 non-null	int64					
9	WHEEZING	309 non-null	int64					
10	ALCOHOL_CONSUMING	309 non-null	int64					
11	COUGHING	309 non-null	int64					
12	SHORTNESS_OF_BREATH	309 non-null	int64					
13	SWALLOWING_DIFFICULTY	309 non-null	int64					
14	CHEST_PAIN	309 non-null	int64					
15	15 LUNG_CANCER 309 non-null int64							
dtypes: int64(16)								
memory usage: 38.8 KB								

	missing
GENDER	0
AGE	0
SMOKING	0
YELLOW_FINGERS	0
ANXIETY	0
PEER_PRESSURE	0
CHRONIC_DISEASE	0
FATIGUE	0
ALLERGY	0
WHEEZING	0
ALCOHOL_CONSUMING	0
COUGHING	0
SHORTNESS_OF_BREATH	0
SWALLOWING_DIFFICULTY	0
CHEST_PAIN	0
LUNG_CANCER	0

GENDE	R AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC_DISEASE	FATIGUE	ALLERGY	WHEEZING	ALCOHOL_CONSUMING	COUGHING	SHORTNESS_OF_BREATH	SWALLOWING_DIFFICULTY	CHEST_PAIN	LUNG_CANCER
	1 69	0				0									1
	1 74														1
	0 59	0	0			0				0					0
	1 63														0
	0 63	0	1	0	0	0	0	0	1	0	1	1	0	0	0

Data Cleaning - Conclusions

- There were no missing values found.
- There weren't any major issues with data cleaning.
 - This is likely due to the dataset being synthetic. In real-world, scaled datasets there would be outliers, duplicates, and missing values to be cleaned.
- Overall, the strategy involved remapping the dataset into 0's and 1's which were logical and compatible with the analytic modelling to be performed.

Exploratory Data Analysis

- The purpose of EDA with this dataset was to identify bias, skewness, multicollinearity, and other factors that may impact the subsequent analysis.
- Plotted a histogram of age and each target variable to identify potential bias in the dataset.
- Generated a heatmap of pairwise correlations among targets to assess multicollinearity and strong associations.
- Tree-based importance scores were used to rank predictors, helping to guide feature selection.

Exploratory Data Analysis - Conclusions

- The dataset is not balanced in terms of age, with a majority of older individuals.
- · A minority of individuals actually have lung cancer.
- Anxiety is strongly correlated with yellow fingers, and moderately correlated with swallowing difficulty. Shortness of breath is moderately correlated with fatigue.
- Age, allergy, alcohol consumption, and peer pressure are among the most important features.

Exploratory Data Analysis

Logistic Regression Feature Importance

Random Forest Feature Importance

Modeling

- Logistic regression and random forest models are utilized.
- Hyperparameter tuning is performed, and the best parameters are included (e.g. clf_c = 0.001).
- L2 regularization is applied by default through logistic regression, helping to prevent overfitting by penalizing large coefficient values.
- Feature engineering is performed by generating interaction terms through polynomial feature expansion, capturing nonlinear relationships between variables.

Results

- Logistic regression performed without hyperparameter tuning, regularization and feature engineering has an ROC AUC that is 0.01 lower than that of the optimized model.
- Optimized LR misclassifies ~18% of all samples with an accuracy of 82.3%.
- Random forest has an AUC comparable to that of nonoptimized LR but with an accuracy of almost 89%.
- This means that random forest ranks predictions roughly the same as LR, but makes more correct predictions at the given threshold.

Logistic Regression Confusion Matrix

Logistic Regression Analytics

Classification Report precision recall f1-score support								
•	71 00131011	recute	11 30010	Suppor c				
0	0.42	1.00	0.59	8				
1	1.00	0.80	0.89	54				
accuracy			0.82	62				
macro avg	0.71	0.90	0.74	62				
weighted avg	0.93	0.82	0.85	62				
Accuracy: 0.823	3							

```
Best params: {'clf_C': 0.001, 'clf_l1_ratio': 0.0, 'clf_penalty': 'l2', 'poly_interaction_only': True}
Best CV AUC: 0.931
```

LR Non-Optimized ROC

LR Optimized ROC

Random Forest Confusion Matrix

Random Forest Analytics

Classification Report (Random Forest)								
	precision	recall	f1-score	support				
0	0.57	0.50	0.53	8				
1	0.93	0.94	0.94	54				
accuracy			0.89	62				
macro avg	0.75	0.72	0.73	62				
weighted avg	0.88	0.89	0.88	62				
Accuracy: 0.887								

Random Forest Non-Optimized ROC

Model Comparison

Logistic Regression SHAP Summary

Random Forest SHAP Summary

Conclusion

- Logistic regression with tuned regularization parameters reach relatively high AUC and accuracy, while Random Forest slightly improves AUC but at the cost of interpretability.
- The highest-weighted features include SMOKING, AGE, and respiratory symptoms such as COUGHING, SHORTNESS_OF_BREATH, and CHEST_PAIN.
- This aligns with the medical literature, stating that tobacco exposure is the leading risk factor for lung cancer and respiratory symptoms are common in patients that have a diagnosis.

Limitations

- The dataset size (n ~ 300) is relatively small; collecting more samples would improve the accuracy of these models.
- Survey responses might be self-reported, which can add bias and potentially mis-annotate the data.
- Other AI/ML techniques should be explored (e.g. Gradient Boosting, XGBoost) along with more involved hyperparameter optimization with nested CV.
- A web application should be developed to allow clinicians to input survey responses and receive risk scores; this will address the data gap outlined previously.

Q&A

Thank You!