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Project Overview

« Early detection of lung cancer dramatically increases

survival rates, but diagnosis is often delayed until advanced
stages.

* In this project, we build a supervised learning pipeline that
predicts whether a patient is likely to have lung cancer from
an anonymous survey covering demographics, lifestyle
habits and respiratory-related symptoms.



Objectives

1. Clean, explore and visualize the survey data.

2. Build and evaluate predictive models (Logistic Regression
as baseline; Random Forest as ensemble)

3. Interpret which features drive the predictions.
4. Summarize findings and outline limitations of the study.



About the Dataset

* This is a publicly-available Kaggle dataset of hypothetical
lung cancer patients that was synthetically generated.

* Nelson, S. G. (2023). Lung Cancer Prediction [Kaggle Notebook]. Kaggle.
Retrieved July 15, 2025,
from

* This contains 11kB of tabulated data, with over 310 records
and 16 features (14 numeric, 2 non-numeric). Outside of
demographic features such as gender and age, there are a
variety of symptom-based features such as anxiety and
allergy, in addition to the target feature, LUNG_CANCER
which is converted into a numeric value.


https://www.kaggle.com/code/sandragracenelson/lung-cancer-prediction/notebook
https://www.kaggle.com/code/sandragracenelson/lung-cancer-prediction/notebook
https://www.kaggle.com/code/sandragracenelson/lung-cancer-prediction/notebook
https://www.kaggle.com/code/sandragracenelson/lung-cancer-prediction/notebook
https://www.kaggle.com/code/sandragracenelson/lung-cancer-prediction/notebook

Data Cleaning

 Missing values were checked for, while duplicates and outliers
were not relevant for this dataset given it didnt have an
identifier, and all numeric columns were re-encoded as 1's/0’s.

* The target variable was mapped from “YES/NO"” to 1/0 to
provide the numeric form needed by classifiers.

* All 2's were replaced with 1's, and all 1's were replaced with 0’s
(where 2 = true/positive and 1 = false/negative) across non-
object columns to ensure consistency in Boolean features, and
avolid unintended ordinal interpretations.

* Gender was re-encoded from M/F to 1/0 to ensure a uniform
numeric representation of the data for downstream analysis.



Data Cleaning

AGE

<class 'pandas.core.frame.DataFrame'> SMOKING
RangeIndex: 309 entries, to 308 YELLOW FINGERS
Data columns (total 16 columns):

# Column Non-Null Count ANXIETY

GENDER 309 non-null PEER_PRESSURE

. k) sl CHRONIC_DISEASE
SMOKING 309 non-null
YELLOW_FINGERS 309 non-null FATIGUE
ANXIETY 309 non-null
PEER_PRESSURE 309 non-null ALLERGY
CHRONIC_DISEASE 309 non-null WHEEZING
FATIGUE 309 non-null
ALLERGY 309 non-null ALCOHOL_CONSUMING

WHEEZING 309 non-null
ALCOHOL_CONSUMING 309 non-null COUGHING

COUGHING 309 non-null SHORTNESS OF BREATH
SHORTNESS_OF_BREATH 309 non-null
SWALLOWING_DIFFICULTY 309 non-null SWALLOWING_DIFFICULTY
CHEST_PAIN 309 non-null
LUNG_CANCER 309 non-null CHEST_PAIN

dtypes: int64(16) LUNG CANCER
memory usage: 38.8 KB -
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GENDER AGE SMOKING YELLOW_FINGERS ANXIETY PEER_PRESSURE CHRONIC_DISEASE FATIGUE ALLERGY WHEEZING ALCOHOL_CONSUMING COUGHING SHORTNESS_OF_BREATH SWALLOWING_DIFFICULTY CHEST_PAIN LUNG_CANCER
1 69 0 1 1 0 0 1 0 1 1 1 1 1 1 1

74 1 0 0 1 1

59 0 0 1 1 1

63 1 1 0 0 1

63 0 1 1 1 0

1 1 1
0 1 0
0 0 0
0 0 0



Data Cleaning — Conclusions

 There were no missing values found.

 There weren’'t any major issues with data cleaning.

* This is likely due to the dataset being synthetic. In real-world,
scaled datasets there would be outliers, duplicates, and missing
values to be cleaned.

* Overall, the strategy involved remapping the dataset into
0’s and 1's which were logical and compatible with the
analytic modelling to be performed.



Exploratory Data Analysis

* The purpose of EDA with this dataset was to identify bias,
skewness, multicollinearity, and other factors that may
Impact the subsequent analysis.

 Plotted a histogram of age and each target variable to
Identify potential bias in the dataset.

 Generated a heatmap of pairwise correlations among
targets to assess multicollinearity and strong associations.

* Tree-based importance scores were used to rank predictors,
helping to guide feature selection.



Exploratory Data Analysis -
Conclusions

* The dataset is not balanced in terms of age, with a majority
of older individuals.

A minority of individuals actually have lung cancer.

* Anxiety is strongly correlated with yellow fingers, and
moderately correlated with swallowing difficulty. Shortness

of breath is moderately correlated with fatigue.

* Age, allergy, alcohol consumption, and peer pressure are
among the most important features.



Exploratory Data Analysis
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Correlation Matrix
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Logistic Regression Feature

Importance

ALLERGY
ALCOHOL_CONSUMING
PEER_PRESSURE
FATIGUE
CHRONIC_DISEASE
SWALLOWING_DIFFICULTY
COUGHING
YELLOW_FINGERS
WHEEZING

ANXIETY

CHEST_PAIN

SMOKING
SHORTNESS_OF_BREATH
AGE

GENDER

(=
e
—

Logistic Regression Coefficients




Random Forest Feature Importance
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Modeling

* Logistic regression and random forest models are utilized.

 Hyperparameter tuning is performed, and the best
parameters are included (e.g. clf_c = 0.001).

* L2 regularization is applied by default through logistic
regression, helping to prevent overfitting by penalizing
large coefficient values.

* Feature engineering is performed by generating interaction
terms through polynomial feature expansion, capturing
nonlinear relationships between variables.




Results

* Logistic regression performed without hyperparameter
tuning, regularization and feature engineering has an ROC
AUC that is 0.01 lower than that of the optimized model.

* Optimized LR misclassifies ~18% of all samples with an
accuracy of 82.3%.

« Random forest has an AUC comparable to that of non-
optimized LR but with an accuracy of almost 89%.

* This means that random forest ranks predictions roughly
the same as LR, but makes more correct predictions at the
given threshold.



Logistic Regression Confusion Matrix

Logistic Regression Confusion Matrix
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Logistic Regression Analytics

Classification Report
precision recall fl-score support

0.42 1.00 0.59
1.00 0.80 0.89

accuracy 0.82
macro avg 0.74

weighted avg 0.85

Accuracy: 0.823

Best params: {'clf_C': 0.001, 'clf__11_ratio': 0.0, 'clf__penalty': '12', 'poly__interaction_only': True}
Best CV AUC: 0.931




LR Non-Optimized ROC

Receiver Operating Characteristic
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LR Optimized ROC

10

ROC Curve

o = o
NN (@) o

True Positive Rate

ot
N

0.0

0.2
Fa

- ROC AUC = 0.96

04 06 10

Ise Positive Rate

08



Random Forest Confusion Matrix

Random Forest Confusion Matrix
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Random Forest Analytics

Classification Report (Random Forest)
precision recall fl-score support

0.57 0.50 0.53
0.93 0.94 0.94

accuracy 9.89
macro avg 0.73

weighted avg 0.88

Accuracy: 0.887




Random Forest Non-Optimized ROC
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Model Comparison
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Logistic Regression SHAP Summary
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Random Forest SHAP Summary
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Conclusion

* Logistic regression with tuned regularization parameters
reach relatively high AUC and accuracy, while Random
Forest slightly improves AUC but at the cost of
Interpretability.

* The highest-weighted features include SMOKING, AGE, and
respiratory symptoms such as COUGHING,
SHORTNESS_OF_BREATH, and CHEST_PAIN.

* This aligns with the medical literature, stating that tobacco
exposure is the leading risk factor for lung cancer and
respiratory symptoms are common in patients that have a
diagnosis.



Limitations

* The dataset size (n ~ 300) is relatively small; collecting more
samples would improve the accuracy of these models.

* Survey responses might be self-reported, which can add
bias and potentially mis-annotate the data.

* Other AI/ML techniques should be explored (e.g. Gradient
Boosting, XGBoost) along with more involved hyper-
parameter optimization with nested CV.

A web application should be developed to allow clinicians
to input survey responses and receive risk scores; this will
address the data gap outlined previously.



Q&A



Thank You!
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